
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:63–89
Published online 15 May 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1509

The steady Navier–Stokes/energy system with
temperature-dependent viscosity—Part 1:

Analysis of the continuous problem
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SUMMARY

In this first part we propose and analyse a model for the study of two-dimensional incompressible Navier–
Stokes equations with a temperature-dependent viscosity. The flow is supposed in a mixed convection
regime and considers an outflow region, leading to a strongly coupled problem between the Navier–Stokes
and energy equations, which will be justified theoretically. The coupling in the continuous problem is
treated by an outer temperature fixed point strategy. Existence results for a particular variational formulation
follows from this study. Further, a particular uniqueness result for small data is also obtained. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Often in Newtonian fluid flow analysis, the viscosity property is considered just as a constant
parameter. This strong simplification for the model of flow motion may be justified for isothermal
flows or very small temperature differences. Other reason of this simplification is associated
sometimes with the computational work in the numerical simulations (further additional loops in
the resolution strategy). Nevertheless, a closer view for the thermophysical properties of a simple
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64 C. E. PÉREZ ET AL.

fluid like water, for instance, shows that the variations for the dynamic viscosity can reach 250%
for normal temperature range (see [1]).

Besides, there exists a robust mathematical theory for the incompressible ‘constant viscosity’
Navier–Stokes equations (see [2–5]), which can be generalized in some particular situations to the
variable viscosity case (see, for instance, [6, 7]). For instance, if the problem has only Dirichlet data,
the extension to the non-constant physical coefficients case is straightforward provided that these
physical coefficients are uniformly bounded. Even if there are different fragments with ‘natural’
(Neumann) and ‘essential’ (Dirichlet) boundary conditions (BCs), the analysis is also extensible
from the classical Dirichlet case provided that the region for the natural BCs are complementary
in the two variables (velocity and temperature, as in [8]). There exist also situations in which the
prescription of fluxes or pressure drops at the outflow allows a mathematical analysis (see, for
instance, [9, 10]).

However, for open, developing flows, the standard BCs for velocity and temperature consider
the same outflow region, in which engineers and physicists consider often ‘natural’ outflow BCs at
this portion, also called ‘do nothing’ BCs. This physical consideration does not match in general
with any of the three situations considered above, and the mathematical analysis becomes much
more difficult. In addition to the ‘non-Laplacian’ formulation, consequence of the non-constant
viscosity, the theoretical tools such as the lifting, the a priori bounds and the regularity results are
not trivial.

In this work, our interest is to take into account the coupling due to viscosity variations with
temperature, the buoyancy effect and outflow BCs for flow situations such as flow in channels or
ducts. For this, we shall deduce a physical model and propose a variational formulation which
can be used in this framework, being closer to the natural variational formulation of the set of
equations related to the physical model. In this first part, we will deduce and justify the existence
and uniqueness for this steady variational problem which considers some generalized outflow BCs,
technique that was first proposed in [11] for the isothermal case, but that we implement and analyse
in the non-isothermal coupled equations. We show also that uniqueness of the coupled problem is
allowed for moderate Reynolds and Péclet numbers and small data.

2. A BRIEF BIBLIOGRAPHICAL REVIEW

We shall discuss some relevant bibliographic references in order to raise the differences with our
case study.

Among the first references concerning the analysis of the Navier–Stokes equations coupled
with the energy equation through a viscosity coupling, which is also one of the main refer-
ences in our work, we refer to [12], who analyse existence of solutions for Bingham fluids with
temperature-dependent viscosity. The main references concerning the use of generalized outflow
BCs implemented in this work are [11, 13], where the incompressible and compressible Navier–
Stokes equations without the coupling with the energy equation were analysed.

In [14] the unsteady problem in compressible fluids is analysed but, as in [12], only Dirichlet BCs
are considered. More recently, in [15] one can find general strategies for different kind of pressure–
velocity–temperature couplings. A general steady non-linear temperature-dependent diffusion coup-
ling is made in [6], from which we follow the decoupling strategy. They consider homogeneous
Dirichlet BCs only. In [16] an existence result for a steady problem with temperature-dependent
viscosity is proved based on monotone operators. Boussinesq models with constant thermophysical
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NAVIER–STOKES SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY 65

properties are considered in [8, 17–19], in which existence and some regularity results are shown.
The outflow hypothesis u · n�0 at the exit part of the domain is taken by these authors for
open-channel flows.

Finally, concerning outflow BCs, a general introduction and rigorous mathematical analysis is
made in [10]. The consideration of the negative part of the velocity flux in the variational formulation
was introduced in [11, 13]. Other admissible outflow BCs are mentioned in [9, 20, 21].

3. PHYSICAL MODEL, GOVERNING EQUATIONS

Let � be a two-dimensional domain occupied by an incompressible Newtonian fluid. Even if the
mathematical analysis presented in the next section is only valid for the two-dimensional case, the
model remains valid in the more realistic three-dimensional situation.

3.1. Physical model

The general governing equations for a Newtonian incompressible fluid are the Navier–Stokes,
continuity and energy equations (see, for instance, [22])

�

(
�
�t
u + (u · ∇)u

)
= F̃ + �g − ∇ p + ∇ · (�D(u)) (1)

∇ · (�u) = 0 (2)

�cp

(
�
�t

T + u · ∇T

)
= ∇ · (�∇T ) (3)

Here, we write u as the velocity field, p the pressure, � the density, T the temperature, � the
dynamic viscosity, � the thermal conductivity, cp the specific heat, g the gravity vector force, t the
time and D(u) the deformation tensor, symmetric part of ∇u. We write formally as F̃ the action
of external forces.

In our work, we will permit the coefficients �, � and � to be dependent on the temperature T
(see Equations (4)–(6)).

Most of the fluids, particularly liquids, are in fact very weakly compressible. Following
Schlichting (cf. [23, p. 9]), compressibility can be neglected if 1

2M
2 � 1, with M being the

Mach number.
Thus, for weak variations of temperature around some reference value Tm , and neglecting the

pressure variations under the low-Mach assumptions, we can state as approximation of �

�≈ �m[1 − �(T − Tm)]
where �m is the density value associated with this reference temperature Tm . We also define the
values �m = �(Tm) and �m = �(Tm) as the dynamic viscosity and thermal conductivity values
for this reference temperature. We also define a kinematic viscosity value as �m = �m/�m . The
constant � is the thermodynamic dilatation coefficient, defined by � = (1/�)��/�T at constant
pressure.
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66 C. E. PÉREZ ET AL.

Under the Boussinesq approximation (see [24, p. 119] for a discussion on this matter),
Equations (1)–(3) become

�m

(
�
�t
u + (u · ∇)u

)
− ∇ · (�(T )D(u)) + ∇ p=F − g�m�(T − Tm) (4)

∇ · u= 0 (5)

�mcp

(
�
�t

T + u · ∇T

)
− ∇ · (�(T )∇T ) = 0 (6)

Next, we choose in addition to the reference temperature, a reference velocity um and a reference
length Hm . We keep the time scale assuming implicitly that tm = Hm/um .

We divide Equation (4) by �m and (6) by �mcp, and introduce the functions

�∗(T ) = �(T )

�m
, �∗(T ) = �(T )

�m

With these functions, Equations (4)–(6) can be written as

�
�t
u + (u · ∇)u −

[
�m
�m

]
∇ · (�∗(T )D(u))+

[
1

�m

]
∇ p=

[
1

�m

]
F −

[
1

�m

]
g�m�(T − Tm) (7)

∇ · u= 0 (8)

�
�t

T + u · ∇T −
[

�m
�m cp

]
∇ · (�∗(T )∇T ) = 0 (9)

In order to obtain a non-dimensional model, we define x∗ = x/Hm , u∗ =u/|um |, p∗ = p/(�m |um |2)
(dynamic pressure) and T ∗ = (T −Tm)/�T , with �T being a characteristic temperature difference.
With the above reference parameters, we introduce a reference Reynolds, Grashof and Péclet
number associated with Tm as

Rem = |um |Hm

�m
, Grm = |g|��T H3

m

�2m
, Pem = �mcp|um |Hm

�m

The consideration of these non-dimensional variables and parameters in (7)–(9) gives the following
non-dimensional model, in which the asterisks have been omitted for simplicity (for a detailed
analysis, see [25])

�u
�t

+ u · ∇u − 1

Rem
∇ · (�(T )D(u)) + ∇ p= Grm

Re2m
Tk + F (10)

∇ · u= 0 (11)

�T
�t

+ u · ∇T − 1

Pem
∇ · (�(T )∇T ) = 0 (12)

In (10), k is the unitary vector acting in the opposite direction to gravity. For convenience, we keep
the expression F to refer the external forces (now dimensionless). In general, the bidimensional
validity of the model is guaranteed when Gr � Re2.
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In order to perform the mathematical analysis, it remains only to specify the properties of the
viscosity and conductivity functions, and state the BCs.

The values of the dynamic viscosity in liquids are usually approximated by exponential cor-
relations (see [26–28]). Among these approximations, the most common viscosity laws for the
approximation of the viscosity are the Arrhenius and Andrade (also called Nahme) laws, expressed
here in dimensional form, valid for Kelvin degrees

Arrhenius Law: �(T ) =C1 exp
C2/(C3+T ) (13)

Andrade’s Law: �(T ) =C1 exp
C2/T (14)

For water in a range of [10–100◦], the values for these constants are obtained usually by least-
squares fitting. Thus, for the Andrade law, the values are C1 = exp(−12.9896) and C2 = 1780.622
(see [28]). It is clear that the validity of these correlation formulas depends on the range of
temperature to be considered. The use of an additional constant in the Arrhenius Law allows more
precision than Andrade Law, which can be of interest in other liquids. For water, Andrade’s Law
gives good accurate values in small ranges of temperature, such as [10–100◦]. For these values
of temperature, the thermal conductivity is, in general, poorly influenced by temperature, and
this small influence can be normally approximated with accuracy by linear correlations or simply
assumed as constant.

For gases, the most utilized correlation formula for the dynamic viscosity is given by the
Sutherland’s law:

Sutherland’s Law: �(T ) = �m

(
T

Tm

)
Tm + C1

T + C2
(15)

In (15), and for a gas like air, Tm = 273K, �m = �(Tm), C1 =C2 = 110.5K. This formula suffers
a degradation in the quality of the approximation far away from the reference temperature, forcing
to another least-squares fitting around another reference temperature for keeping the validity
(see [25]).

Further, in the case of gases, the dynamic viscosity and the thermal conductivity present a
similar behaviour (see [29]), as shown by the relation

�(T ) = �(T )cp
Pr

(16)

where Pr is the Prandtl number. In order to perform the mathematical analysis valid for these two
kinds of fluids (liquids and gases), we will take into account only the common properties for the
dynamic viscosity and thermal conductivity functions for liquids and gases, that is: the dynamic
viscosity and thermal conductivity viewed as functions of the temperature are strictly positive,
Lipschitz continuous, and uniformly bounded functions, i.e. there exist positive constants �1, �2
and �1, �2 such that, in the range of validity of the formulas, we have

�1��(T )��2, �1��(T )��2 (17)

3.2. Boundary conditions

This study focuses on open flows, in particular, straight channels. This interest allows to identify
the behaviour of the fluid flow due only to the temperature variations, but the following analysis
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68 C. E. PÉREZ ET AL.

applies to other domains too. The effect of the geometry in the constant-property case was analysed
numerically in [30] and the references therein.

Concerning BCs, at the entry we must choose a regular velocity profile, such as parabolic
(Poiseuille), and a prescribed value Te for the temperature. At the walls, no-slip conditions for
velocity and prescribed temperature distributions Tu(x) and Tl(x) for the upper and lower walls,
respectively. The entry and the walls are in consequence associated with Dirichlet BCs. In the
outflow portion of the domain, the BCs to prescribe are not so clear. There is not a physical boundary
in the case of open flows, but some kind of BCs are needed in order to state the mathematical
problem. For this kind of flow, a frequently used assumption as temperature outflow BCs is to
state a zero flux density, which in this case is expressed by �(T )∇(T ) ·n= 0. As far as the thermal
conductivity is strictly positive, this is equivalent to the classical outflow condition �T/�n= 0 used
in many numerical simulations. For the velocity field, it seems more appropriate to state that the
outflow zero normal traction forces, that is, r(u, p) : n= 0, with r being the stress tensor, which
depends here on the temperature through the viscosity: r(u, p) =−pd+(1/Rem)�(T )D(u), where
d is the Kronecker’s tensor. We note that even if the viscosity function is also strictly positive, we
have not a priori the equivalence with the classical (numerical) outflow condition �u/�n+ pn= 0
used in many numerical simulations of constant-property fluid flows (see [21]).

The BCs are summarized as follows:

u= ue(x), at the inflow, T = Te(x), at the inflow

u= 0, at walls, T = Tu(x), Tl(x), at walls

r(u, p) : n= 0, at the outflow, (�(T )∇T ) · n= 0, at the outflow

(18)

4. MATHEMATICAL ANALYSIS OF THE CONTINUOUS PROBLEM

We shall formulate and analyse a weak form of the steady continuous problem deduced in the pre-
vious section. This may seem to be non-sensed a priori, because the coupled problem is essentially
non-steady in their nature (see [25]), but it has a mathematical interest because the time discretiza-
tion of the evolution problem by means of backward finite difference formulas leads, in each
time step, to a variant of this steady problem (see also the Remark 4 at the end of this section).

From now on, we do not write the indexes ‘m’ for the Reynolds, Grashof and Péclet numbers
(Rem,Grm,Pem) but it is important to remember that in their definition there is the reference
temperature value Tm chosen at the beginning. Thus, we are interested in solving

u · ∇u − 1

Re
∇ · (�(T )D(u)) + ∇ p= Gr

Re2
Tk + F (19)

∇ · u= 0 (20)

u · ∇T − 1

Pe
∇ · (�(T )∇T ) = 0 (21)

Let � ⊆ R2 an open, bounded, convex domain with a Lipschitz boundary ��. We assume that we
have a part �D ⊆ �� with positive measure, and we set �N = ��\�D. The portion �D is associated
with the Dirichlet BCs for velocity and temperature and �N is associated with the outflow BCs.
Unless other specification, these hypotheses concerning the geometry will be considered hereafter.
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NAVIER–STOKES SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY 69

We provide Equations (19)–(21) with the following set of BCs:

u=uD, T = TD on �D (22)

r(u, p) : n= 0, (�(T )∇T ) · n= 0 on �N (23)

We recall that by definition r(u, p) =−pd+ (1/Rem)�(T )D(u). The surface function TD which
takes the prescribed values of temperature at the entry and the walls is supposed uniformly bounded:
there exists two real constants T1 and T2 such that

T1�TD(x)�T2 on �D (24)

In virtue of the non-dimensional temperature chosen in the model, we note that T1 is not necessarily
positive. We will show that, for the solution of the coupled problem, and under the assumptions
stated in the deduction of the model, the temperature T is bounded by these uniform constants too.

4.1. Weak formulation of the coupled non-linear problem

The set of BCs considered suggests naturally the functional spaces for this study. Let L2(�) the
standard Lebesgue space, with norm ‖ · ‖0. We introduce the following well-known functional
vector spaces:

H1(�) = {v ∈ L2(�),∇v ∈L2(�)} (25)

H1
0,�D

={v ∈ H1(�), v|�D = 0} (26)

H1/2(�D) ={� ∈ L2(�D), ∃v ∈ H1(�), v|�D = �} (27)

where v|�D is the partial trace on �D of a function v ∈ H1(�) . The analogous vector-valued
spaces will be denoted by bold symbols, so for example: H1

0,�D
= H1

0,�D
× H1

0,�D
. The norms for

the Hilbert spaces Hm(�) will be denoted by ‖ · ‖m,�. The scalar product associated with the
L2(�) norm will be noted (·, ·)0,� or just (·, ·) if it is unambiguous. In this paper, C, with or
without subscript, denotes a generic positive constant depending only on � and �D. The value of
C may differ at different occurrences.

Following [31], it is well known that for the elements in H1
0,�D

, we have the Poincaré’s inequality
and the Korn’s inequality

‖v‖0,��C‖∇v‖0,� ∀v ∈ H1
0,�D

(28)

‖v‖21,��C(‖v‖20,� + ‖D(v)‖20,�) ∀v ∈ H1
0,�D

(29)

The weak form of (19)–(21) is the following: let be uD given in H1/2(�D) and TD given
in H1/2(�D). Find (u, p, T ) in H1(�) × L2(�) × H1(�) such that u|�D =uD and T |�D = TD
solution of

aT (u, v) + b(u,u, v) − (div v, p)0,� =
(
Gr

Re2
Tk, v

)
0,�

+ (F, v)0,� ∀v∈H1
0,�D

(�) (30)

(divu, q)0,� = 0 ∀q ∈ L2(�) (31)

aT (T,�) + b(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (32)
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where

aT (u, v) =
∫

�

1

Re
�(T )D(u) : ∇v (33)

b(u, v,w) =
∫

�
(u · ∇)v · w (34)

aT (�, �) =
∫

�

1

Pe
�(T )∇� · ∇� (35)

b(u,�, �) =
∫

�
(u · ∇)�� (36)

The notations in Equations (30)–(36) are inspired on the early work of Duvaut and Lions [12],
who analysed the viscosity coupling problem for a Bingham fluid. The index for the applications
aT and aT have for mission to show the temperature field which is associated with the functions
of viscosity and conductivity. We note in particular that the expression aT (T, �) in Equation (35)
makes this equation non-linear.

Thanks to the symmetry of the deformation tensor D(v), the bilinear form aT (·, ·), continuous
on H1

0,�D
×H1

0,�D
is symmetric since we have

aT (u, v)=
∫

�

1

Re
�(T )D(u) : D(v) (37)

From (37), we have naturally that

aT (u, v)��2 C

Re
‖∇u‖0,�‖∇v‖0,�, aT (v, v)��1 C

Re
‖∇v‖20,�

with C being the constant given by Korn’s inequality (29).
In R2, the term b(u, u, v) is defined for u and v in H1(�) since then u and v belong to L4(�)

in virtue of the Sobolev’s inclusions in this dimension. The term b(u, T, �) is defined for u in
H1(�), T and � in H1(�) for the same reasons.

For the convective terms, we recall some well-known identities

b(u, v,w) = 1

2
b(u, v,w) − 1

2
b(u,w, v) + 1

2

∫
��

u · nv · w − 1

2

∫
�
divu v · w (38)

b(u, T,�) = 1

2
b(u, T, �) − 1

2
b(u,�, T ) + 1

2

∫
��

u · nT� − 1

2

∫
�
divu T� (39)

Next, we note that, for u satisfying divu= 0 in �, v= 0 on �D and �= 0 on �D, we obtain

b(u, v,w) = 1

2
b(u, v,w) − 1

2
b(u,w, v) + 1

2

∫
�N

u · n v · w (40)

b(u, T,�) = 1

2
b(u, T,�) − 1

2
b(u, �, T ) + 1

2

∫
�N

u · n T� (41)
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As can be expected, without any consideration on the outflow region �N, there is no easy way
to obtain an a priori control of the convective terms (40) and (32) in the weak formulations (30)
and (32), because they consider the unknown velocity field u at this portion of the boundary.
This fact was first noted by Heywood et al. (see [10]) which also mention their impossibility to
obtain an a priori estimation similar to the well-known Leray and Hopf techniques to bound the
non-homogeneous steady problem. They can prove, however, the equivalences between this kind
of ‘do nothing’ BCs (following the notation of Gresho and Sani [32] and Heywood et al. [10])
and the physical problem which consider pressure drops and/or prescribed velocity fluxes on the
outflow region, by showing how some hidden or implicit BCs appear in the different variational
formulations of the given problem.

As our interest in this first part is the analysis of the continuous problem, we shall propose
a variational formulation ‘closer enough’ to the original problem (19)–(23). For this, we follow
the ideas proposed for the incompressible isothermal Navier–Stokes equations by Bruneau and
Fabrie [11]. It consists on the use of some alternative convective terms which take into account
the behaviour of the velocity at the outflow region. Thus, we introduce the forms

b̃(u, v,w) =b(u, v,w) + 1

2

∫
�N

[u · n]−v · w (42)

b̃(u,	,�) = b(u,	, �) + 1

2

∫
�N

[u · n]−	� (43)

In (42) and (43), n refers to the unit outward vector to �N and [·]− refers to the ‘negative part’
function, defined by [ f ]−(x)= sup{− f (x), 0}. We also define the ‘positive part’ function as
[ f ]+(x)= sup{0, f (x)} (see Proposition 4.2).

When (43) is applied to a test function �∈ H1
0,�D

we obtain

b̃(u,�,�) = b(u,	,�) + 1

2

∫
�N

[u · n]−�2 = 1

2

∫
�N

[u · n]+�2�0 (44)

The last value is obtained directly from (41). A similar result is obtained for the evaluation
b̃(u, v, v) for v∈H1

0,�D
. Thus, a priori estimates of the homogeneous test functions are avail-

able, remaining only the estimates of the non-homogeneous part of the velocity and temperature
unknowns.

So, we shall focus on the analysis of the following model: let be uD given in H1/2(�D) and TD
given in H1/2(�D). Find (u, p, T ) inH1(�) × L2(�) × H1(�) such that u|�D =uD and T |�D = TD
solution of

aT (u, v) + b̃(u,u, v) − (div v, p) =
(
Gr

Re2
Tk + F, v

)
∀v∈H1

0,�D
(�) (45)

(divu, q)= 0 ∀q ∈ L2(�) (46)

aT (T,�) + b̃(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (47)
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A solution (u, p, T ) of this weak formulation (45)–(47) is, at least formally, a solution of

− 1

Re
∇ · (�(T )D(u)) + u · ∇u + ∇ p= Gr

Re2
Tk + F (48)

divu= 0 (49)

− 1

Pe
∇ · (�(T )∇T ) + u · ∇T = 0 (50)

u=uD on �D, r(u, p) : n + 1
2 [u · n]−u= 0 on �N (51)

T = TD on �D, �(T )∇T · n + 1
2 [u · n]−T = 0 on �N (52)

We note that if (u, p, T ) ∈H1(�) × L2(�) × H1(�) with u= uD, T = TD on �D is a solution
of the variational formulation (48)–(52) and is such that u · n�0 on �N, obviously it will be
also solution of the variational problem (30)–(32). This is an important issue, because a solution
(u, p, T ) of the weak formulation (30)–(32) is, at least formally, a solution of the problem (19)–
(21). In the case that u · n�0 (re-entrant flow case), then both problems (48)–(52) and (30)–(32)
are no longer equivalent, and, up to the author’s knowledge, it remains an open problem.

The coupled problem (45)–(47) is strongly non-linear. The strategy chosen for the resolution
consists of performing an outer (global) Picard iteration in the thermophysical properties and the
buoyancy term. That gives, at each step of an iteration, two decoupled problems, namely:

• We choose a reference temperature T̂ and solve the Navier–Stokes problem using T̂ in the
definition of � and the buoyancy term (see Equations (60)–(61)).

• We fix the velocity u and the reference temperature T̂ and solve (53) for T .

Another possibility is to perform the global iteration in the velocity, but in this way the energy
equation becomes non-linear, and a uniqueness result is necessary in this equation in order to
define the complete outer iteration. This second strategy is analysed in [25].

In the following subsections, we will analyse each subproblem generated by considering an
outer decoupling with a temperature field T̂ and we shall prove that the following application
allows a fixed point:

T̂ �→ (u(T̂ ), p(T̂ )) �→ T (u(T̂ ))

We first analyse the linearized (in temperature) energy and Navier–Stokes equations.

4.2. The decoupled energy equation

In this subsection, let T̂ the element which makes the global decoupling in temperature for the
coupled problem, and let u a ‘frozen’ divergence-free field (it will be a solution of the uncoupled
Navier–Stokes equations).

If we are interested in the weak problem (47), we must solve the linear problem: find T ∈ H1(�)

such that T |�D = TD, solution of

aT̂ (T,�) + b̃(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (53)

We note a subtle mathematical consideration: we do not know a priori if the temperature solutions
will be bounded or not (this will be a consequence of maximum principles). In consequence, at the
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first time, we should extend the domain of definition of conductivity and viscosity functions � and
� to newer functions �̃ and �̃, even if these new functions do not have a physical sense. In order
to keep the natural properties of the original function, the following extension of the functions is
classical:

�̃(T ) =

⎧⎪⎪⎨
⎪⎪⎩

�(T1) if T<T1,

�(T ) if T1�T�T2,

�(T2) if T>T2,

�̃(T ) =

⎧⎪⎪⎨
⎪⎪⎩

�(T1) if T<T1

�(T ) if T1�T�T2

�(T2) if T>T2

(54)

That is, we consider constant-bounded extensions of the domain of definition, keeping the uniform
bounds given in (17).

It is also convenient in the following to work with the ‘homogeneous part’ of the temperature.
For that, let T ∗ ∈ H1(�) be a lifting of TD: T ∗|�D = TD. As in [17], we can assume that the lifting
is continuous from H1/2(�D) into H1(�) and hence

‖T ∗‖1,��C‖TD‖1/2,�� (55)

With this lifting, we can formulate the equivalent of (53) in terms of the homogeneous part

 = T − T ∗ ∈ H1

0,�D
(�). Under the geometry assumptions considered at the beginning of this

section, the following proposition resumes the existence and uniqueness result for this problem.

Proposition 4.1
Let u∈H1(�) be a given divergence-free velocity field. Then, the weak problem: find 
 ∈ H1

0,�D
(�)

such that

aT̂ (
,�) + b̃(u, 
,�) =−aT̂ (T ∗, �) − b̃(u, T ∗, �) ∀� ∈ H1
0,�D

(�) (56)

admits an unique solution in H1
0,�D

.

Proof
The proof is a direct consequence of Lax–Milgram lemma. For a fixed u∈H1

0,�D
, it is clear that

the left term of (56) defines a bilinear form in H1
0,�D

(�)2, and the right-hand side defines a linear

form in H1
0,�D

(�) thanks to Sobolev embeddings and trace theorems.

The ellipticity is obtained this time thanks to (44), since for all �∈ H1
0,�D

b(u,�,�) + 1

2

∫
�N

[u · n]−�2 = 1

2

∫
�N

[u · n]+�2�0 (57)

From (57) the ellipticity condition follows. Moreover, by using the triangular inequality, the bound
of the lifting T ∗ given in (55) and the fact that �2/�1�1, it is easy to obtain the following bound
for the temperature T

‖T ‖1,��C̃

(
�2
�1

+ Pe

�1
‖u‖1,�

)
‖TD‖1/2,�D (58)

This proves the existence and uniqueness of 
 solution of (56) and then also the existence and
uniqueness of T solution of (53). Note that this a priori bound of the temperature T depends on
the velocity field u. �
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The next step is to show that the solution of (56) is physically allowable in the following
sense: because no internal heat generation is considered in the model, the solution must remain
bounded by the boundary values. This fact allows us to neglect the extensions built in (54) for the
viscosity and conductivity functions and to continue the analysis with the original non-dimensional
thermophysical properties.

Proposition 4.2
Let u∈H1(�) be a given divergence-free velocity field, and let us suppose that the Dirichlet data
TD ∈ H1/2(�D) is such that

T1�TD(x)�T2 a.e. on �D

Then, problem (53) has an unique solution T that verifies

T1�T (x)�T2 a.e. in �

Proof
Following the Marcus–Mitzel and Rademacher theorems (see [33, 34]), the function �=[T −T2]+
belongs to H1(�). Moreover, by construction, it verifies that �= 0 in �D. With this choice of test
function � in Equation (53), we obtain

aT̂ (T, [T − T2]+) + b̃(u, T, [T − T2]+) = 0

The rest of the proof consists of analysing the supports of each term [T − T2]+ in the integrals
(here referred as [T�T2]). In the region where T − T2�0, we have (T − T2) = [T − T2]+. Also,
since T2 is constant, in the support [T�T2] we have ∇T = ∇(T − T2) = ∇[T − T2]+. Thus,∫

�∩[T�T2]
�̃(T̂ )

Pe
∇[T − T2]+ · ∇[T − T2]+ +

∫
�∩[T�T2]

(u · ∇[T − T2]+)[T − T2]+

+ 1

2

∫
�N∩[T�T2]

[u · n]−[T − T2]+[T − T2]+ = 0 (59)

Next, because of (57), we can neglect the last two terms in (59) and obtain:

�1
Pe

∫
�∩[T�T2]

|∇[T − T2]+|2�0

Since [T − T2]+ ∈ H1
0,�D

(�), we conclude that

[T − T2]+ = 0

which means

T�T2 a.e. on �

By choosing as test function �=−[T − T1]−, we obtain likewise

T�T1 a.e. on �

and the result follows. �
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Remark 1
In virtue of Proposition 4.2, with a datum TD verifying T1�TD�T2 on �D, from now on we
can omit the extensions �̃ and �̃. Thus, we continue with the original viscosity and conductivity
functions � and �.

We now analyse the uncoupled Navier–Stokes equation.

4.3. The decoupled Navier–Stokes equations

Let T̂ ∈ H1(�) be fixed in this section; we shall analyse the following weak Navier–Stokes problem:
find (u, p) ∈H1(�) × L2(�) with u=uD on �D, solution of

aT̂ (u, v) + b̃(u,u, v) − (div v, p) =
(
Gr

Re2
T̂k + F, v

)
∀v∈H1

0,�D
(�) (60)

−(divu, q)= 0 ∀q ∈ L2(�) (61)

We note in (60)–(61) that the linearization is realized globally for the temperature field, so at
this level, there is a ‘frozen’ temperature field T̂ in the viscous and the buoyant term, but the
Navier–Stokes equations remain non-linear in velocity. In addition, in order to define a global
iteration (temperature→velocity→temperature) it is necessary to state not only an existence, but
also an uniqueness result for the velocity solutions. This is the aim of the following proposition.

Proposition 4.3
For any F given in L2(�), for any T̂ given in L2(�), with T1�T̂�T2 and for any uD given in
H1/2(�D), the problem: find (u, p) ∈H1(�) × L2(�) with u= uD on �D, solution of (60)–(61)
has at least one solution.

Proof
As for the previous section, we proceed to formulate the problem in the ‘homogeneous’ part of
the velocity field: w=u − u∗, where u∗ is a convenient lifting of the Dirichlet BCs. Thus, to the
Dirichlet data uD ∈H1/2(�D), we associate a function u∗ ∈H1(�) such that

u∗ =uD on �D and divu∗ = 0 in �

The choice of u∗ will be precised later for satisfying a specific bound. Once this function u∗ is
selected, it remains fixed for the rest of the analysis.

Once this lifting is chosen, the Navier–Stokes problem (60)–(61) is written as: find (w, p) ∈
H1

0,�D
(�) × L2(�) solution of

aT̂ (w + u∗, v) + b̃(w + u∗,w + u∗, v) − (div v, p) =
(
Gr

Re2
T̂k + F, v

)
∀v∈H1

0,�D
(�) (62)

−(divw, q)= 0 ∀q ∈ L2(�) (63)

Let us introduce the forms

ã(v0; v1, v2) = ã0(v1, v2) + ã1(v0, v1, v2) (64)
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with

ã0(v1, v2) = aT̂ (v1, v2) + b(v1,u∗, v2) + 1

2

∫
�N

([(v1 + u∗) · n]− − [u∗ · n]−)u∗ · v2 (65)

ã1(v0, v1, v2) =b(v0 + u∗, v1, v2) + 1

2

∫
�N

[(v0 + u∗) · n]−v1 · v2 (66)

and

L(v) =
(
Gr

Re2
T̂k + F, v

)
− b̃(u∗,u∗, v) (67)

With these notations, we write (62)–(63) as: find (w, p) ∈H1
0,�D

(�) × L2(�) solution of

ã(w;w, v) − (div v, p) = L(v) ∀v∈H1
0,�D

(�) (68)

−(divw, q)= 0 ∀q ∈ L2(�) (69)

On the one hand, according to the compactness of the embedding of H1
0,�D

(�) into L4(�), to

the compactness of the trace mapping from H1
0,�D

(�) into L3(�N), for each v2 ∈H1
0,�D

(�) the

mapping v1 �→ ã(v1; v1, v2) is weakly continuous on H1
0,�D

(�). On the other hand, we will prove,
see below, that with a convenient choice of the lifting u∗, the form ã is elliptic in the sense that
there exists a positive number �, which may be selected independent of the physical constants
related to the fluid and independent of T̂ , such that

∀v∈H1
0,�D

(�) with div v= 0 in �, ã(v; v, v)��
�1
Re

‖v‖21,� (70)

Then, the problem: find w∈H1
0,�D

(�) with divw= 0 in �, solution of

ã(w;w, v) = L(v) ∀v∈H1
0,�D

(�) with div v= 0 in � (71)

has at least one solution w∈H1
0,�D

(�) (apply, for example, the Theorem IV.2.1 in [3]). To a

solution of this problem, we associate u=w + u∗ and we consider the problem: find p ∈ L2(�)

solution of

(div v, p) = l(v) ∀v ∈ H1
0,�D

(�) (72)

with

l(v) = aT̂ (u, v) + b̃(u, u, v) −
(
Gr

Re2
T̂k + F, v

)
(73)

The linear form v �→ l(v) is continuous on H1
0,�D

(�) and the bilinear form (v, q) �→ (div v, q)

is continuous on H1
0,�D

(�) × L2(�). Moreover, for any q ∈ L2(�) we can construct g∈H1/2(��)

such that g= 0 on �D,
∫
�� g · n= ∫

�N
g · n= ∫

� q and ‖g‖1/2,���C‖q‖0,�. With such a func-

tion g, we can find v∈H1(�) such that v= g on ��, div v= q on � and ‖v‖1,��C‖g‖1/2,��
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(see [35]). That proves the inf–sup condition

inf
q ∈ L2(�)

sup
v∈H1

0,�D
(�)

(div v, q)

‖v‖1,�‖q‖0,� �� (74)

for some positive number �. We conclude the existence and uniqueness (for u fixed) of p ∈ L2(�)

solution of (72) by the Babuška theory (see [36]) and evidently the pair (u, p) is solution of
(60)–(61). So, the proof of the Proposition 4.3 will be complete when the ellipticity of ã referred
in (70) is proved.

Proof of ellipticity (70) of ã, given by (64)–(66)
For all divergence-free v∈H1

0,�D
(�), with (44) we have

ã1(v; v, v) = b̃(v + u∗, v, v)

= 1

2

∫
�N

[(v + u∗) · n]+v · v

which leads to
ã1(v; v, v)�0 (75)

The Körn and Poincaré’s inequalities lead to the existence of a positive number �, which depends
only on the geometry of � and the decomposition of the boundary into �D and �N such that, for
all v∈H1

0,�D
(�),

aT̂ (v, v)�2�
�1
Re

‖v‖21,� (76)

Finally, as a generalization of the Hopf’s Lemma, for any �>0 there exists an element u∗ ∈H1(�)

such that

u∗ =uD on �D, divu∗ = 0 in �

∀v∈H1
0,�D

(�),

∣∣∣∣b(v,u∗, v) + 1

2

∫
�N

([(v + u∗) · n]− − [u∗ · n]−u∗ · v
∣∣∣∣��‖v‖21,�

(77)

(Indication for proving this technical result: generalize the construction given in [3, pp. 287–291],
with a cut-off function 
� = 1 in a neighbourhood of �D and 
�(x)= 0 if d(x,�D)�2 exp(−1/�).
More details in [37].)

The proof also uses the following bound:

‖[(v + u∗) · n]− − [u∗ · n]−‖L3(�N)�‖v · n‖L3(�N)�C‖v‖1,� (78)

From (75) to (77), we deduce for all �>0

∀ v∈H1
0,�D

(�) with div v= 0 on �, ã(v; v, v)�
(
2�

�1
Re

− �
)

‖v‖21,� (79)

The choice �= �(�1/Re) in (79) furnishes the desired ellipticity property (70). �

We complement the previous proposition with the following result concerning the bounds of
the solutions of (60)–(61).
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Proposition 4.4
Let us assume that the hypotheses of Proposition 4.3 hold. Then, there exists a constant C ,
depending on � and �D, such that any solution (u, p) of the Navier–Stokes problem (60)–(61)
satisfies

‖u‖1,��C

(
‖uD‖1/2,�D + Re

�1
‖uD‖21/2,�D

+ Gr

�1Re
‖T̂ ‖0,� + Re

�1
‖F‖0,�

)
(80)

and

‖p‖0,��C

(
�2‖uD‖21/2,�D

+ Gr

Re2
‖T̂ ‖0,� + ‖F‖0,� + �2‖u‖21,�

)
(81)

Remark 2
The bounds on (80) and (81) depend on the temperature field which makes the uncoupling.

Proof of the proposition
From (68), if we consider as test function w=u − u∗, estimation (70) reads in particular

�1
Re

‖w‖1,��C

(
Gr

Re2
‖T̂ ‖0,� + ‖F‖0,� + ‖u∗‖21,�

)
(82)

Besides, ‖u∗‖1,��C‖uD‖1/2,�D, from which we obtain the bound for ‖w‖1,�. The triangular
inequality gives the desired estimate (80).

For the pressure estimate, again from (68), we have

(div v, p) = ã(w,w, v) − L(v) ∀v∈H1
0,�D

(�) (83)

The use of the inf–sup condition (74) gives

‖p‖0,��C

(
Gr

Re2
‖T̂ ‖0,� + ‖F‖0,� + �2‖w‖21,�

)
(84)

And the estimate ‖w‖21,��C(‖u‖21,� + ‖uD‖21/2,�D
) leads to (81). �

We finish the analysis of the uncoupled Navier–Stokes problem (60)–(61) with a necessary
uniqueness result, in order to be able to define the global decoupling in temperature. As usual (see
Theorem IV.2.2 in [3]), the uniqueness will be possible to state under suitable data.

Proposition 4.5
Let the hypotheses of the Proposition 4.3 be verified. Then, for sufficiently small Reynolds and
Péclet numbers, and small values of the prescribed boundary values TD and uD, the Navier–Stokes
problem (60)–(61) admits an unique solution.

Proof
The proof follows the same strategy than the constant-property case analysed by Lions (cf. [4]).
Let (u1, p1) and (u2, p2) be two solutions of the Navier–Stokes problem (60)–(61) belonging to

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:63–89
DOI: 10.1002/fld



NAVIER–STOKES SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY 79

H1(�) × L2(�). Their difference yields for each test function v∈H1
0,�D

(�) and all q ∈ L2(�)

aT̂ (u1 − u2, v) + b̃(u1, u1, v) − b̃(u2,u2, v) − (div v, p1 − p2) = 0 (85)

(−div(u1 − u2), q)= 0 (86)

The choice v=u1 −u2 belongs to H1
0,�D

(�) and hence it can be considered as test function. Their
insertion in (85) holding account (86) yields

aT̂ (u1 − u2,u1 − u2) + b(u1 − u2,u1,u1 − u2) + b(u2,u1 − u2, u1 − u2)

+1

2

∫
�N

[u1 · n]−u1 · (u1 − u2) − 1

2

∫
�N

[u2 · n]−u2 · (u1 − u2) = 0 (87)

and from (87) we have finally

aT̂ (u1 − u2,u1 − u2) + b(u1 − u2,u1,u1 − u2) + b(u2,u1 − u2, u1 − u2)

+1

2

∫
�N

[u1 · n]−(u1 − u2) · (u1 − u2)

+1

2

∫
�N

([u1 · n]− − [u2 · n]−) u2 · (u1 − u2) = 0 (88)

In (88) we proceed to the majoration: with the ellipticity condition (76), the continuity of the
convective terms, the boundness of the H1-norm of the solutions u1 and u2 and the use of bound
(78) gives

2�
�1
Re

‖u1 − u2‖21,� �C(‖u1 − u2‖21,�(‖u1‖1,� + ‖u2‖1,�))

+‖u1 − u2‖2L3(�N)
(‖u1‖L3(�N) + ‖u2‖L3(�N)) (89)

and thanks to the compact embeddings, we can write

2�
�1
Re

‖u1 − u2‖21,��C0(‖u1‖1,� + ‖u2‖1,�)‖u1 − u2‖21,� (90)

By using (80), we can read (90) as

2�
�1
Re

‖u1 − u2‖21,�

�2C

(
‖uD‖1/2,�D + Re

�1
‖uD‖21/2,�D

+ Gr

�1Re
‖T̂ ‖0,� + Re

�1
‖F‖0,�

)
‖u1 − u2‖21,� (91)

for a constant C which is now the product of the constant C that appears in (80) and the constant
C0 in (90). In consequence, we obtain the uniqueness of the solution of problem (60)–(61) if

C

(
‖uD‖1/2,�D + Re

�1
‖uD‖21/2,�D

+ Gr

�1Re
‖T̂ ‖0,� + Re

�1
‖F‖0,�

)
<�

�1
Re

(92)

Hereafter, ‘small data’ will mean that estimate (92) is verified. �
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4.4. The coupled problem

In the previous sections, we have analysed the uncoupled subproblems which come from the
following model

aT (u, v) + b̃(u,u, v) − (div v, p) =
(
Gr

Re2
Tk + F, v

)
∀v in H1

0,�D
(�) (93)

(divu, q)= 0 ∀q in L2(�) (94)

aT (T,�) + b̃(u, T, �) = 0 ∀� in H1
0,�D

(�) (95)

We have proved that for a temperature field realizing the uncoupling, and under the hypotheses
of Propositions 4.3 and 4.5, the (linear) energy equation and the Navier–Stokes equations admit a
unique solution. Thus, the following iteration is well defined

T̂ �→ (u(T̂ ), p(T̂ )) �→ T (u(T̂ ))

However, in the previous analysis, the uniform bounds for each subproblem depend on the
solution of the complementary one and the temperature field which realizes the uncoupling. More
precisely, for an arbitrary fixed T̂ , which fixes the thermophysical properties and makes the
uncoupling of problem (93)–(95), the solution T of energy equation (95) verifies the uniform
bound

‖T ‖1,��C

(
�2
�1

+ Pe

�1
‖u‖1,�

)
‖TD‖1/2,�D (96)

Note that this bound does not depend explicitly on T̂ , but implicitly by u=u(T̂ ).
In the same way, let T̂ , which fixes the thermophysical property of viscosity and buoyancy. The

solution (u, p) of the Navier–Stokes problem (60)–(61) verifies the following estimates

‖u‖1,��C

(
‖uD‖1/2,�D + Re

�1
‖uD‖21/2,�D

+ Gr

�1Re
‖T̂ ‖0,� + Re

�1
‖F‖0,�

)
(97)

‖p‖0,��C

(
�2‖uD‖21/2,�D

+ Gr

Re2
‖T̂ ‖0,� + ‖F‖0,� + �2‖u‖21,�

)
(98)

We note in (97) and (98) that the velocity and pressure depend on the temperature field which
realizes the uncoupling.

Remark 3
From estimates (96)–(98), we note that if the Grashof number is zero (Gr= 0, that is, no buoyant
term), we can obtain from (97) an uniform bound for u independent of the temperature field which
makes the uncoupling, and this estimate in (98) gives an uniform bound for the pressure and in
(96) a uniform bound for the temperature field, which as a sense if the data of the problem is
small enough. In fact, the constant property and non-buoyant problem, which correspond to the
situation analysed by Bruneau and Fabrie (see [13]) matches on this case. In a such situation, one
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can define the convex, closed, non-empty, bounded set of solutions (u, p, T ) bounded by these
uniform bounds, and use the compact embeddings of H1

0 (�D) into L2(�) in order to prove, with
sequentially continuity arguments valid on this closed bounded convex set, that the hypotheses
of the Schauder’s fixed point theorem apply. The technique in this situation follows immediately
from the standard case shown in Gagneux and Madaune-Tort [33]. This remark is stated in order
to show that the existence (and uniqueness) when Gr= 0 follows with the same techniques utilized
in the constant-property case.

However, when Gr>0, estimates (96) and (98) are not uniform, and the existence results will
need additional hypotheses.

First of all, let us introduce some notation. For an arbitrary T̂ , let us define the following maps:

S : T̂ �→ S(T̂ )

Unique solution of Navier.Stokes problem (60).(61) (99)

Z : T̂ �→ ZT̂

Linearized energy problem (53) (100)

That is, S(T̂ ) denotes the unique solution of the Navier–Stokes problem (60)–(61) for a given
temperature field T̂ which defines the viscosity function and the buoyant term. The application
Z defines, for each temperature field T̂ , an energy problem ZT̂ which for a given divergence-
free velocity field u, gives the unique solution of the linearized energy equation. That is, ZT̂ is
defined by

ZT̂ : H1(�) → H1(�)

u �→ ZT̂ (u)

ZT̂ (u) = unique solution of the linearized energy equation (53) (101)

for a given solenoidal velocity field u (102)

We shall prove, by means of a classical Banach fixed point theorem, that the following application
is a contractive mapping:

T̂ �→ T = ZT̂ (S(T̂ )) (103)

For this, we shall prove the existence of a positive constant C<1 such that ‖ZT̂1
(S(T̂1)) −

ZT̂2
(S(T̂2))‖1,�<C‖T̂1 − T̂2‖1,�. From this estimate, the existence of a fixed point is guaran-

teed, being the contractivity constant C dependent only on the given data.
The result will be established under two additional hypotheses:

[H1] The viscosity and thermal conductivity functions are Lipschitz continuous functions,
with constants denoted by Lip(�) and Lip(�), respectively.

[H2] ‖S(T̂ )‖1,��C‖ZT̂ (S(T̂ ))‖∞,�.
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Hypothesis H1 matches for the viscosity models presented in the modelling section. We recall
that in general, the least squares towards exponential correlations apply with good precision to
moderate temperature ranges in liquids.

Hypothesis H2 is physically justified by the so-called Boussinessq approximation. With this
foregoing simplification, the Navier–Stokes momentum equations are reduced to (4), where the
density �m is supposed to be linearly dependant with the temperature difference �T = T − Tm .
It is this variation that induces the transverse fluid motion. This strong hypothesis, only valid for
small temperature differences �T , should be associated with small velocities, and for a steady
laminar flow.

Hypothesis H2 is needed because a priori we have not an uniform estimate for the velocity
solutions S(T̂ ). Thus, from H2 we are assuming the continuity of the inverse application Z−1

T̂
.

Since the estimates of the solution ZT̂(S(T̂)) are independent of T̂ this hypothesis is not unrealistic

(the forms ZT̂(S(T̂)) are equicontinuous-like).
This assumption is certainly reasonable for small temperature differences as those encountered

in free convection. In other way: small temperature differences will create small buoyancy effects
and correlatively small velocity differences.

The main result is the following theorem.

Theorem 4.1
Let us assume that the hypotheses of Proposition 4.3 and the hypotheses H1 and H2 hold. Then,
for small prescribed data (see (115)), the outer iteration T̂ �→ T = ZT̂ (S(T̂ )) is a contractive
mapping, which implies that the coupled problem (93)–(95) admits a solution.

Proof
For a given T̂ , let us recall the uncoupled problems

aT̂ (T,�) + b(u, T,�) + 1

2

∫
�N

[u · n]−T�= 0 ∀�∈ H1
0,�D

(104)

aT̂ (u, v) + b(u, u, v) + 1

2

∫
�N

[u · n]−u · v − (div v, p) =
(
Gr

Re2
T̂k + F, v

)
∀v∈H1

0,�D
(105)

(divu, q) = 0 ∀q ∈ L2(�) (106)

Let T̂1 and T̂2 be given. According to definitions (99) and (100), the choice ZT̂1
(S(T̂1))−ZT̂2

(S(T̂2))
is an admissible test function for the energy equation (104), and we have

1

Pe

∫
�

�(T̂1)∇ZT̂1
(S(T̂1))∇(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))

− 1

Pe

∫
�

�(T̂2)∇ZT̂2
(S(T̂2))∇(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))

+
∫

�
(S(T̂1) · ∇)ZT̂1

(S(T̂1))(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))
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−
∫

�
(S(T̂2) · ∇)ZT̂2

(S(T̂2))(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))

+1

2

∫
�N

[S(T̂1) · n]−ZT̂1
(S(T̂1))(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))

−1

2

∫
�N

[S(T̂2) · n]−ZT̂2
(S(T̂2))(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))

= 0 (107)

Re-arranging terms, we have

1

Pe

∫
�

�(T̂1)∇(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))∇(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))

+ 1

Pe

∫
�
(�(T̂1) − �(T̂2)∇ZT̂2

(S(T̂2))∇(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))

+
∫

�
(S(T̂1) · ∇)(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))

+
∫

�
((S(T̂1) − S(T̂2)) · ∇)ZT̂2

(S(T̂2))(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))

+1

2

∫
�N

[S(T̂1) · n]−(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))(ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2)))

+1

2

∫
�N

([S(T̂1) · n]− − [S(T̂2) · n]−)ZT̂2
(S(T̂2))(ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2)))

= 0 (108)

Taking into account (57), hypothesis H1 and the bounds for the solutions ZT̂1
(S(T̂1)), ZT̂2

(S(T̂2)),

S(T̂1) and S(T̂2), we have

�1
Pe

‖ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2))‖21

�C
Lip(�)

Pe
‖T̂1 − T̂2‖1‖ZT̂1

(S(T̂1))‖∞‖ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2))‖1

+‖S(T̂1) − S(T̂2)‖1,�‖ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2))‖1,�‖ZT̂2
(S(T̂2))‖∞,�

+ C̃‖ZT̂2
(S(T̂2))‖∞,�‖S(T̂1) − S(T̂2)‖1,�‖ZT̂1

(S(T̂1)) − ZT̂2
(S(T̂2))‖1,� (109)
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Because the uniform bound for ZT̂2
(S(T̂2)) given by (97), we obtain

‖ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2))‖1,��C

(
Lip(�)

�1
‖T̂1 − T̂2‖1,� + ‖S(T̂1) − S(T̂2)‖1,�

)
(110)

In the same way, working with the Navier–Stokes equations (105), we have that the choice
(S(T̂1) − S(T̂2)) is an admissible test function. We have then

1

Re

∫
�

�(T̂1)D(S(T̂1)) : D(S(T̂1) − S(T̂2)) − 1

Re

∫
�

�(T̂2)D(S(T̂2)) : D(S(T̂1) − S(T̂2))

+
∫

�
(S(T̂1) · ∇)S(T̂1) · (S(T̂1) − S(T̂2)) −

∫
�
(S(T̂2) · ∇)S(T̂2) · (S(T̂1) − S(T̂2))

+1

2

∫
�N

[S(T̂1) · n]−S(T̂1) · (S(T̂1) − S(T̂2)) − 1

2

∫
�N

[S(T̂2) · n]−S(T̂2) · (S(T̂1) − S(T̂2))

=
∫

�

Gr

Re2
(T̂1 − T̂2)k · (S(T̂1) − S(T̂2)) (111)

Re-arranging terms, we have

1

Re

∫
�

�(T̂1)D(S(T̂1) − S(T̂2)) : D(S(T̂1) − S(T̂2))

+ 1

Re

∫
�
(�(T̂1) − �(T̂2)D(S(T̂2)) : D(S(T̂1) − S(T̂2))

+
∫

�
(S(T̂1) · ∇)(S(T̂1) − S(T̂2)) · (S(T̂1) − S(T̂2))

+
∫

�
((S(T̂1) − S(T̂2)) · ∇)S(T̂2) · (S(T̂1) − S(T̂2))

+1

2

∫
�N

[S(T̂1) · n]−(S(T̂1) − S(T̂2)) · (S(T̂1) − S(T̂2))

+1

2

∫
�N

([S(T̂1) · n]− − [S(T̂2) · n]−)S(T̂2) · (S(T̂1) − S(T̂2))

=
∫

�

Gr

Re2
(T̂1 − T̂2)k · (S(T̂1) − S(T̂2)) (112)
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Taking into account (57), hypotheses H1 and H2 and the bounds for the solutions ZT̂1
(S(T̂1)),

ZT̂2
(S(T̂2)), S(T̂1) and S(T̂2), after grouping terms, we have

�1
Re

‖S(T̂1) − S(T̂2)‖1,� � C̃
(�1
Re

− C‖ZT̂2
(S(T̂2))‖∞,�

)−1

×
(
Lip(�)

Re
‖T̂1 − T̂2‖1,�‖ZT̂2

(S(T̂2))‖∞,� + Gr

Re2
‖T̂1 − T̂2‖1,�

)
(113)

With (113) we go back to (110) and we obtain

‖ZT̂1
(S(T̂1)) − ZT̂2

(S(T̂2))‖1,�

�C̃‖T̂1 − T̂2‖1,�
(
Lip(�)

�1
+ Lip(�)

Re
‖ZT̂2

(S(T̂2))‖∞,� + Gr

Re2

)
(114)

Hence, if

C̃

(
Lip(�)

�1
+ Lip(�)

Re
‖ZT̂2

(S(T̂2))‖∞,� + Gr

Re2

)
<1 (115)

then, (114) implies that the mapping Z is a contractive mapping (we recall that in the validity of
the model, it is assumed that Gr�Re2). �

4.5. A uniqueness result

In the finite-element analysis to be realized in the next part (see [38]), an uniqueness result
is needed, in order to prove the convergence of the discrete approximations towards the unique
solution of the coupled problem. As usual in Navier–Stokes equations, uniqueness will be obtained
under small data (see the standard case in Theorem IV.2.2 of [3]).

With the set of hypotheses in the existence analysis of the previous section, we can state the
following result.

Theorem 4.2
Under the hypotheses of the previous existence theorem (Theorem 4.1), the following coupled
problem allows an unique solution for small prescribed data (see condition (126))

aT (u, v) + b̃(u, u, v) − (div v, p) =
(
Gr

Re2
Tk + F, v

)
∀v∈H1

0,�D
(116)

(divu, q) = 0 ∀q ∈ L2(�) (117)

aT (T,�) + b̃(u, T, �) = 0 ∀� ∈ H1
0,�D

(118)

Proof
We follow the same arguments than in the contractivity analysis. First of all, we note that this
time we have uniform bounds for the solutions (as fixed points of the uncoupled problems), which
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depend only on the problem data. We note further that having these uniform bounds for ‖u‖1,�
and ‖T ‖1,�, we can deduce uniform bounds for ‖D(u)‖0,� and ‖∇T ‖0,�.

Let (u1, p1, T1) and (u2, p2, T2) be two solutions of the coupled problem (116)–(118). If we
take as test functions, respectively, (u1 − u2), (p1 − p2) and (T1 − T2) in the difference of the
equations verified by each solution, we obtain

1

Re

∫
�

�(T1)D(u1) : D(u1 − u2) − 1

Re

∫
�

�(T2)D(u2) : D(u1 − u2)

+
∫

�
(u1 · ∇)u1 · (u1 − u2) −

∫
�
(u2 · ∇)u2 · (u1 − u2)

+1

2

∫
�N

[u1 · n]−u1 · (u1 − u2) − 1

2

∫
�N

[u2 · n]−u2 · (u1 − u2)

+
∫

�
(p1 − p2) div (u1 − u2) =

∫
�

Gr

Re2
(T1 − T2)k · (u1 − u2) (119)

∫
�
(p1 − p2) div (u1 − u2) = 0 (120)

1

Pe

∫
�

�(T1)∇T1∇(T1 − T2) − 1

Pe

∫
�

�(T2)∇T2∇(T1 − T2) +
∫

�
(u1 · ∇)T1(T1 − T2)

−
∫

�
(u2 · ∇)T2(T1 − T2) + 1

2

∫
�N

[u1 · n]−T1(T1 − T2)

−1

2

∫
�N

[u2 · n]−T2(T1 − T2) = 0 (121)

By following the same re-arrangement from (112) for the momentum equations, and taking into
account (120), we obtain the following estimate (here, K1 stands for the uniform bound of ‖u2‖1,�)

�1
Re

‖u1 − u2‖21,� �C

(
Lip(�)

Re
‖T1 − T2‖1,�K1‖u1 − u2‖1,�

+‖u1 − u2‖21,�‖u2‖1,� + Gr

Re2
‖T1 − T2‖1,�‖u1 − u2‖1,�

)
(122)

We note in (122) that the term ‖u1 − u2‖1,� appears squared or multiplied by ‖T1 − T2‖1,�.
In a similar way, referring as K2 the uniform bound of ‖∇T2‖0,�, we obtain for the energy

equation (121)

�1
Pe

‖T1 − T2‖21,��C

(
Lip(�)

Pe
‖T1 − T2‖21,�K2 + ‖u1 − u2‖1,�K2‖T1 − T2‖1,�

)
(123)

Thus, we have from (123) that

‖T1 − T2‖1,��C‖u1 − u2‖1,� (124)
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Taking into account this relation (124), we go back to estimation (122) and we have(
�1
Re

− C̃

(
Lip(�)

Re
− 1 − Gr

Re2

))
‖u1 − u2‖21,��0 (125)

Hence, if (
�1
Re

− C̃

(
Lip(�)

Re
− 1 − Gr

Re2

))
>0 (126)

then, the coefficient which multiplies the term ‖u1 − u2‖21,� remains positive, we obtain u1 =u2
and then T1 = T2. The last conclusion for the temperature is due to (124).

Having T1 = T2 and u1 =u2 we go back to weak momentum equation (119) and we have in a
distributional sense that p1 − p2 =C , but the outflow BCs with T1 = T2 and u1 = u2 makes that
C = 0, so p1 = p2. �

Remark 4
From the study realized in this section, it follows that for the model with generalized outflow BCs
analysed, if we consider in addition �, � ∈ R+ and g ∈ L2(�), the following problem is well posed:
find (u, p, T ) ∈H1(�) × L2(�) × H1(�) such that, for all (v, �, �) ∈H1

0,�D
× L2(�) × H1

0,�D

�(u, v) + aT (u, v) + b(u, u, v) + 1

2

∫
�N

[u · n]−u · v + (div v, p) = (F, v) + Gr

Re2
(Tk, v)

(divu, �) = 0

�(T,�) + aT (T,�) + b(u, T, �) + 1

2

∫
�N

[u · n]−T� = (g, �)

(127)

All the previous proofs are easily adapted to this new situation. In consequence, one can show that
(127) admits also a unique solution (under the corresponding newer a priori bounds and a new
(and weaker) ellipticity condition instead of (25)).

This problem (127) arises when the corresponding evolution problem is discretized by backward
difference formulas (see [25]).

5. CONCLUDING REMARKS

We have analysed in this first part a mathematical model associated with a flow into a channel, which
considers a coupling between the steady Navier–Stokes equations and the scalar energy equation by
taking into account the temperature dependence of the three thermophysical properties: dynamic
viscosity, thermal conductivity and density. The mathematical model is stated as a generalized
Boussinesq model, and some BCs are stated in the exit region. From this model, a closer variational
formulation is stated, and this coupled problem was attacked by means of a fixed point strategy,
which gives rise to uncoupled linear energy equation and the Navier–Stokes equations.

The variational formulation of the set of steady partial differential equations (30)–(32) state a
problem which is not easy to handle, because there is no information available on the behaviour of
the outflow term. As in Heywood et al. [10], we do not present an existence result for the original
weak problem (30)–(32), which remains open and will be subject of future research. The analysis
is far to be a straightforward generalization of the standard homogeneous Dirichlet techniques.
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We have been able, however, to propose and justify a variational formulation which is well
adapted for the study of open flow situations and mixed convection regimes. Their mathematical
analysis is easily adapted to other situations such as confined flow (for instance, the cavity problem).
Existence and uniqueness results are possible to find, as usual, under small data hypothesis, for
this kind of coupled problems. We recall that our main motivation for this work is that this kind of
open flow problems are commonly found in real applications, such as chemical vapour deposition
(see [39]).

The main difficulty of this coupled problem comes from the buoyant term, because if we do
not consider the gravity (that is, taking Gr= 0, as in [13]), we can obtain uniform bounds which
are independent of the temperature element realizing the uncoupling, and from this, standard fixed
point arguments applies (see [33]).

As long as the uniqueness result is stated, the next step consists of building an approximate
solution for this problem towards a discretization procedure. Thus, in the next part of this work
(see [38]), we shall continue with the analysis of a finite-element discretization of the proposed
variational formulation, with numerical results which show that even if the predominant temperature
effect in this model is given by the buoyancy, there exists an influence of the viscosity variations
with the temperature. This influence becomes of great interest in the study of the associated
convective heat transfer process (see [25]).
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37. Pérez CE. A Leray–Hopf technique for the non-homogeneous Navier–Stokes equations with outflow regions, in
preparation.
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